Compact-LWE: Enabling Practically Lightweight Public Key Encryption for Leveled IoT Device Authentication
نویسندگان
چکیده
Leveled authentication allows resource-constrained IoT devices to be authenticated at different strength levels according to the particular types of communication. To achieve efficient leveled authentication, we propose a lightweight public key encryption scheme that can produce very short ciphertexts without sacrificing its security. The security of our scheme is based on the Learning With Secretly Scaled Errors in Dense Lattice (referred to as Compact-LWE) problem. We prove the hardness of Compact-LWE by reducing Learning With Errors (LWE) to Compact-LWE. However, unlike LWE, even if the closest vector problem (CVP) in lattices can be solved, Compact-LWE is still hard, due to the high density of lattices constructed from Compact-LWE samples and the relatively longer error vectors. By using a lattice-based attack tool, we verify that the attacks, which are successful on LWE instantly, cannot succeed on Compact-LWE, even for a small dimension parameter like n = 13, hence allowing small dimensions for short ciphertexts. On the Contiki operating system for IoT, we have implemented our scheme, with which a leveled Needham-Schroeder-Lowe public key authentication protocol is implemented. On a small IoT device with 8MHZ MSP430 16-bit processor and 10KB RAM, our experiment shows that our scheme can complete 50 encryptions and 500 decryptions per second at a security level above 128 bits, with a public key of 2368 bits, generating 176-bit ciphertexts for 16-bit messages. With two small IoT devices communicating over IEEE 802.15.4 and 6LoWPAN, the total time of completing an authentication varies from 640ms (the 1st authentication level) to 8373ms (the 16th authentication level), in which the execution of our encryption scheme takes only a very small faction from 46ms to 445ms.
منابع مشابه
Cryptanalysis of Compact-LWE
As an invited speaker of the ACISP 2017 conference, Dongxi Liu recently introduced a new lattice-based encryption scheme (joint work with Li, Kim and Nepal) designed for lightweight IoT applications, and announced plans to submit it to the NIST postquantum competition. The new scheme is based on a variant of standard LWE called Compact-LWE, but is claimed to achieve high security levels in cons...
متن کاملA Mutual Authentication Method for Internet of Things
Today, we are witnessing the expansion of various Internet of Things (IoT) applications and services such as surveillance and health. These services are delivered to users via smart devices anywhere and anytime. Forecasts show that the IoT, which is controlled online in the user environment, will reach 25 billion devices worldwide by 2020. Data security is one of the main concerns in the IoT. ...
متن کاملRing-LWE Ciphertext Compression and Error Correction
Some lattice-based public key cryptosystems allow one to transform ciphertext from one lattice or ring representation to another e ciently and without knowledge of public and private keys. In this work we explore this lattice transformation property from cryptographic engineering viewpoint. We apply ciphertext transformation to compress Ring-LWE ciphertexts and to enable e cient decryption on a...
متن کاملPublic Key Infrastructures for Trust and Authentication in the IoT
The Internet of Things is a global infrastructure of smart electronic devices embedded with sensors with the purpose of collecting, processing, exchanging and delivering data. One of the main requirements of the IoT is that all the connected objects are available at any time. Since the complexity of this network constantly grows, security and privacy are vital for its development. The focus of ...
متن کاملDoS-Resistant Attribute-Based Encryption in Mobile Cloud Computing with Revocation
Security and privacy are very important challenges for outsourced private data over cloud storages. By taking Attribute-Based Encryption (ABE) for Access Control (AC) purpose we use fine-grained AC over cloud storage. In this paper, we extend previous Ciphertext Policy ABE (CP-ABE) schemes especially for mobile and resource-constrained devices in a cloud computing environment in two aspects, a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017